
A GossipA Gossip--based Service forbased Service for
Failure Detection and Resource ManagementFailure Detection and Resource Management

In Heterogeneous, Distributed SystemsIn Heterogeneous, Distributed Systems

A. George and R. Subramaniyan

High-performance Computing and Simulation (HCS) Research Laboratory
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL

{george,subraman}@hcs.ufl.edu
www.hcs.ufl.edu

Contents

Ø Introduction
Ø Motivations
Ø Gossip concepts
Ø Background

ü Failure detection service
ü Performance of the service

Ø Present research
ü Extensions to failure detection service
ü Failure timing and comparison of failure detection services
ü Gossip-based resource monitoring service

Ø Conclusions and future research
Ø References

Introduction

Ø Clusters and cluster-based computational grids are the HPC
system of choice for many applications

Ø Clusters built as a network of workstations from COTS-based
components possess an attractive performance vs. cost ratio

Ø However, as systems scale, so do odds and
sources of failures, as does difficulty in
monitoring and managing resources

Ø Systems also becoming increasingly heterogeneous

Ø Primary focus of this talk: Overview of research at UF on
efficient techniques for failure detection and resource
management in scalable, heterogeneous, distributed systems

Motivations

Ø Distributed and heterogeneous nature of clusters makes
scalable failure detection and performance a key challenge

Ø Potential of gossip methods for resource monitoring, failure
detection, consensus, etc., scaling with system size

Ø Gossiping does not critically depend upon any particular
network node, path, link, or message

Ø Past research demonstrating high-speed,
low-overhead dissemination and sharing of
system state information

Ø No single point of failure; more efficient than
group communication techniques; can be very
responsive

Gossip Concepts

Ø Early on, used primarily for consistency management
of replicated databases, reliable multicast and broadcast

Ø Nodes communicate according to some underlying
randomized or deterministic algorithm

Did you hear
about nodes
6 and 58?

No, but let
me tell you
about nodes
41 and 89!

Ø Every node shares its information with
any other node in the system
periodically

Ø Information shared depends upon the
service (can be liveness, network load,
CPU load, memory load, etc.)

Layered Gossip

Even gossiping is not scalable at first
Ø Large number of nodes means there is

much information to share in each
gossip

Ø Large networks take many rounds of
gossiping to completely spread the
information

I know about nodes 2, 5, 8,
15, 62, 92, 134, 186, 201, 345, 562, 801,
956, 976, 1023, 1101, 1423, 1700, 1823, 2012, 2220,

2483, 2582, 2823, 3124, 3342, 4482, 4842, 5123, 5223 …

Whoa!!

Layered schemes provide scalability
Ø Network is divided into groups
Ø Nodes gossip frequently with other nodes in

the same group
Ø Gossip messages are passed between groups

less frequently
LAN or
WAN

LAN or
WAN

Layered Gossip (cont.)

2

1

1

1

1

1

1

Example of 2-layer system with L1 and L2 gossip

Ø Divide and conquer approach

Ø Nodes in the system are divided
into groups

Ø Groups are arranged in a
hierarchical fashion to form the
leaves of a ‘Gossip Tree’

Ø Consensus is reached in the
lowest group (L1) and
propagated to the rest
ü For a two-layer system, ‘L1

Gossip’ is intra-group gossip
ü ‘L2 Gossip’ is inter-group gossip

Consensus

Did everyone hear
about node 12?

Yes!

No.

Solution: Consensus
Ø Consensus is reached when a majority

of nodes detects the same failure
Ø Consensus information is added to the

gossip messages
Ø Must be performed in distributed

fashion to be scalable and avoid SPOF
Layered communication also used
to support scalable consensus

But, gossiping can result in an
uneven spread of information
Ø Some nodes may detect a failure

before others
Ø False failure detections may result

if information spreads too slowly

(critical for failure detection; not necessarily for resource monitoring)

Did everyone hear
about node 12?

Yes!Yes!

Background
Failure Detection Service

Ø Tgossip or gossip time - interval between two gossip messages

Ø Tcleanup or cleanup time - interval after which a node’s failure is suspected

Ø Tconsensus or consensus time - interval after which consensus is reached
about a failed node

I

IV III

II

CLOCK

V

e.g. 5-node system with Tcleanup= 5 × Tgossip

Tgossip

Node V status
Message from II?

Is time since last
message = Tcleanup ?

Suspect II?

NO

NO

NO

1

No. of cycles

12233445

NO

NO

YES

YES

Background
Data Structures

Ø Gossip list - vector containing number of Tgossip intervals since last
heartbeat, for each node

Ø Suspect vector whose ith element is set to ‘1’ if node i is
suspected, otherwise it is set to ‘0’

Ø The suspect vectors of all the n nodes together form a suspect
matrix of size n × n

Ø Livelist - vector maintaining the liveness information of all the
nodes in the system

Ø Local suspect matrix and gossip list updated based on
received suspect matrix and gossip list

Ø Gossip list and suspect matrix exchanged every Tgossip

Background
Consensus and Failure Detection

Ø Consensus reached on the state of node j if each element in
column j of suspect matrix contains a ‘1’

0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

I II III IV

I

II

III

IV

Suspect Matrix

M

MMF

M - Gossip message
F - Failed node

Sample 4-node system

III

I IV

II

(Gossip list + Suspect Matrix)

Gossip list

Tcleanup = 100ms

Maintained locally not transmitted

I II III IV
03075110

0001
I II III IV

Suspect Vector

Data structures maintained in one live node

Background
Failure Detection with Layered Gossiping

M

MMF

III

I
IV

II

M1M1

M1

e.g. 2-layered system with 10 nodes divided into 3 groups

Ø Nodes within a group take turns to communicate group
information to the other groups

M1: gossip list, suspect matrix of the
groups G1, G2, G3

M: gossip list, suspect matrix of the
nodes within the group + M1

G1

G3

G2

Either II, III or IV in G3 broadcast the failure
of I in G3 to all the nodes in the system

M

MM

III

I

II

M

MM

III

I

II

Experimental Testbed

CARRIER: A High-Performance Computer for
Architecture, Network, and System Research

Computational Grid Supercomputer
• 376 Pentium-compatible CPUs
• 240 networked nodes
• 50 GB main memory
• 3.1 TB storage
• Data networks up to 5.3 Gb/s
• PCI64/66 support (i.e. 4×PCI)

For these experiments:
• Up to 96 nodes employed
• Gossip messages sent over control network

(switched Fast Ethernet)

Consensus Time

0

200

400

600

800

1000

1200

0 16 32 48 64 80 96

Number of nodes

C
on

se
ns

us
 T

im
e

(m
s)

LWOB

FWOB

FWB

LWB
• Tgossip = 10ms

• Flat gossiping
uses round-
robin (RR) here

• For layered
architecture, L1
is RR and L2 is
random

• Group size set
to 8

Ø LWB scales almost ideally

Ø LWOB is least scalable in this configuration
Ø attributed to the limited scalability of L2 gossip with fixed group size
Ø however, small number of large groups will reach consensus much faster in LWOB

than will (as here) a large number of small groups

Network Utilization

0

200

400

600

800

1000

1200

0 8 16 24 32 40 48 56 64 72 80 88 96

Number of nodes

B
an

dw
id

th
 p

er
 n

od
e

(K
b/

s)

Flat Gossiping

Layered Gossiping

Ø Layered structure achieves significantly better scalability with modest magnitude
by distributed communication with smaller data structures for transmission

Ø e.g. with 96-node system, layered service requires only about 10% of network
bandwidth utilization associated with flat service

• Tgossip = 10ms

• Flat gossiping
uses RR here

• For layered
architecture, L1
is RR and L2 is
random

CPU Utilization

0

4

8

12

16

20

0 8 16 24 32 40 48 56 64 72 80 88 96

Number of nodes

CP
U

Ut
ili

za
tio

n
(%

)

Flat gossip

Layered gossip • Tgossip = 10ms

• Flat gossiping
uses random

• For layered
architecture, L1
and L2 are both
random

Ø Again, layered structure achieves significantly better scalability with modest
magnitude via processing of smaller data structures

Ø e.g. with 96-node system, layered service requires only ~7% of the CPU
utilization required by flat service

Present Research

Ø Extensions to failure detection service
ü Make service more complete, correct and scalable
ü Aids for dynamic system reconfiguration

Ø Failure timing and comparison of failure detection services
ü Determine dependencies of applications on failure detection services and

model execution time analytically
ü Survey of various failure detection services to find best fit based on

characteristics and execution time of application

Ø Gossip-based resource monitoring service
ü Ascertain state of system resources
ü Support for load balancing and scheduling services

Failure Detection Service
Protocol Extensions

Ø Previously, our layered failure
detection service supported only
two layers, limiting scalability

Ø Support for any number of layers
now provided for large-scale
systems

Nodes

Layer2 groups

Layer3 groups

e.g. 3-layered system with 84 nodes

Ø Issues like group failures, network partitions challenging the
correctness of the service are addressed and solved

Ø A new node-insertion mechanism added to improve the
dynamic scalability of the system

New
node

Resource Utilization
Analytical Formula

i

l

i

i fL ×∑
=1

)1
8

)(1()1(46 +



++++− ∑

=

k
k

l

jk

ggjl

gk : group size in layer k B : bandwidth utilization per node
Lj : length of jth-layer gossip packet l : number of layers
fi : frequency of ith layer gossip message

Blayered =

Lj =

Ø Scalability of enhanced gossip service is verified
experimentally

Ø Formulae developed to project bandwidth per node for
very large systems

Ø Formulae are based on size of Ethernet header, gossip
packets, and system configuration

Resource Utilization
Optimum System Configuration

Ø The number of layers used to get minimum bandwidth overhead is based on
system size

* 8 > n < 64 (8 × 8) : 2 layers * 64 >= n < 512 (8 × 8 × 8) : 3 layers
* 512 >= n < 4096 (8 × 8 × 8 × 8) : 4 layers * 4096 >= n < 32768 (8 × 8 × 8 × 8 × 8) : 5 layers

Ø e.g. Minimum bandwidth per node in a 6000-node system
v 175 Kbps for 2-layered system ; 11 Kbps for 5-layered system

Ø Similarly, for CPU utilization at minimum, requires system configuration to
follow trend above as it closely follows pattern of network utilization

• ‘L’ layered system with ‘n’ nodes
§ g1 = next higher multiple of 8 of (‘L’ th root of

system size)
§ g (for other layers) = ‘ L -1’ th root of ‘n ÷ g1’

Generalized formula to calculate group sizes giving
approximate minimum bandwidth

Example: A system with 812 nodes and 4 layers
g1 = next higher multiple of 8 of [812 ^ (1/4)] = 8
g2 = g3 = (812 ÷ 8)^(1/3) = 5

Ø Goal: execute applications as fast as possible despite failures
üDetermine effects of failures on application
üDetermine qualities of failure detectors related to these effects
üExamine failure detection services to show effects and tradeoffs

Ø Failure detection services being compared
üGossip – Stand-alone, high-speed, low-level failure detector
üCondor – Specialized high-throughput scheduling environment
üCORBA – Fault-tolerant object management middleware
üGlobus – Grid computing middleware
üPVM – Cluster computing middleware

Ø Failure detection services can be categorized in terms of
üMethod of getting host information – ‘Push’ or ‘Pull’
üFailure detection scheme – ‘Centralized’ or ‘Distributed’
üPassive versus active
üConsensus

Failure Detection Services
Comparisons

Ø Factors that affect application performance
ü Failure detection time

ü Checkpointing intervals

ü Reconfiguration time

üWorkload redistribution

Checkpoints

Time

c = time between checkpoint and failure

f = failure detection time

rs = system reconfiguration time

ra = application reconfiguration time

= host failure

= failure detection in progress

Redistributed
work

Lost work

c f
1
2
3

rars

Failure Detection Services
Implications of Failures

Service on a Service
Gossip-based Resource Monitoring

Ø Gossip failure detection service is efficient, resilient, and
scalable

Ø But still incurs overhead, and such a service does not
reduce computational intensity of the application using it

Ø Why not piggyback some other system information along
with liveness information for efficient dissemination?

Ø Key Idea: build gossip-based resource monitoring service
on top of failure-detection service

Ø Dependable and scalable approach

Ø More utility for less price!

Resource Monitoring

Ø Useful for detecting and disseminating state of available
resources, overloaded conditions

Ø Critical low-level service for load balancing and
scheduling by middleware services and applications

Ø Essential for system administrators to achieve a single
system image of nodes administered

Ø Source of information regarding resource usage and
performance of nodes

Resource Monitoring Service
Software Architecture

HARDWARE

Gossip AgentSensors

Comm. Interface

R
M

A

Application Interface

Admin.
Applications Schedulers / LBs

User Applications

Ø Resource monitoring service is scalable, distributed and fault-
tolerant

Ø Simple API provided for interfacing with applications and
other services such as load balancers, schedulers, etc.

Resource Monitoring Service
Structure

MIB

MIB

MIB

AMIB

MIB

MIB

MIB

AMIB

MIB

MIB

MIB

AMIB

AMIB

MIB – Management Information Base AMIB – Aggregate Management Information Base

Ø Monitored parameters collectively form a management information
base

Ø System parameters are exchanged within each group in Layer-1 while
aggregate values are exchanged between groups

Resource Monitoring Service
Sample Built-in Aggregation Functions

1.5Load Average

120MFree Memory

YResource
Availability

2.0Load Average

120MFree Memory

YResource
Availability

1.5Load Average

20MFree Memory

NResource
Availability

2.5Load Average

Mean aggregation fn

Minimum aggregation fn

Maximum aggregation fn

Boolean aggregation fn

Ø Consistency of data maintained with heartbeat values used for failure detection

Ø Aggregate functions and user data can be dynamically added

Ø Functions and data are uniquely identified by IDs assigned by the service

Resource Monitoring Service
Sample API Functions

U

C

C

I

I
Type

User data of nodes and
aggregate data of group

Receive user data from RMAgms_recv_userdata

Success/FailureStop dissemination of user data
identified by ID

gms_userdata_kill

Success/FailureStop dissemination of monitor
data

gms_kill

ID assignedAssign ID for new aggregation
function

gms_aggfn_init

Success/FailureRegister RMA with gossip
agent

gms_init
Return argumentsOperationAPI Function name

Ø API functions broadly classified into
ü Initialization functions – I
ü Control functions – C
ü Update functions – U

Conclusions

Ø Enhancements made with efficient, scalable, and resilient low-
level service for failure detection and consensus

Ø Targeted for heterogeneous, distributed, large-scale systems

Ø Tradeoffs identified in # of gossip layers versus system size
ðScalability of consensus time and resource utilization into 1000s of nodes!

Ø Model to characterize impact of failure service characteristics
on application performance; support comparisons

Ø New resource monitoring and management service with
inherent and user-definable system state information

Ø Disseminated resource status across system with same
advantages in performance, scalability, and resilience as in
failure detection

Future Directions

Ø Investigate how best to couple failure detection service with
application middleware (e.g. MPI, PVM) for cluster computing

Ø Investigate how best to couple resource monitoring service
with prominent load balancing/scheduling services

Ø Investigate issues when moving from clusters to grids

Ø Improve dynamic system reconfiguration to become more of a
plug-and-play system

Ø Develop GUI to dynamically render both failure and resource
state for sysadmin and user usage

Ø Support Sandia requirements for s/w quality assurance

Ø Investigate use of resource monitoring service for forecasting
by maintaining experiential database of values and timestamps

References
1. R. Van Renesse, R. Minsky, and M. Hayden, “A Gossip-style Failure Detection Service,” Proc.

of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing Middleware, England, September 15-18, 1998, pp. 55-70.

2. R. Van Renesse, “Scalable and Secure Resource Location,” Proc. of the IEEE Hawaii
International Conference on System Sciences, Maui, Hawaii, January 4-7, 2000.

3. I. Ahmed, “Semi-distributed Load Balancing for Massively Parallel Multicomputer Systems,”
IEEE Transactions on Software Engineering, Vol. 17, No. 10, October 1991, pp. 987-1004.

4. M. Burns, A. George, and B. Wallace, “Simulative Performance Analysis of Gossip Failure
Detection for Scalable Distributed Systems”, Cluster Computing, Vol. 2, No. 3, 1999, pp.207-
217.

5. S. Ranganathan, A. George, R. Todd, and M. Chidester, “Gossip-Style Failure Detection and
Distributed Consensus for Scalable Heterogeneous Clusters,” Cluster Computing, Vol. 4, No.
3, July 2001, pp.197-209.

6. K. Sistla, A. George, R. Todd and R. Tilak, “Performance Analysis of Flat and Layered Gossip
Services for Failure Detection and Consensus in Scalable Heterogeneous Clusters,” Proc. of
IEEE Heterogeneous Computing Workshop at IPDPS, San Francisco, CA, April 23-27, 2001.

7. D. Collins, A. George, and R. Quander, “Achieving Scalable Cluster System Analysis and
Management with a Gossip-based Network Service,” Proc. of IEEE Conference on Local
Computer Networks (LCN), Tampa, FL, November 14-16, 2001.

